Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates

نویسندگان

  • Haixia Mei
  • Chad M. Landis
  • Rui Huang
چکیده

Compressing a thin elastic film attached to a thick compliant substrate can lead to buckling instability. Two commonly observed buckling modes, buckle-delamination and wrinkling, have each been analyzed separately in previous studies. Recent experiments have observed that the two modes can co-exist and co-evolve. In this paper, by analytical and finite element methods, we present a study on concomitant wrinkling and buckle-delamination for an elastic film on a highly compliant substrate. First, without delamination, we present an analytical solution for wrinkling that takes into account the effect of Poisson’s ratio of the substrate. In comparison with a nonlinear finite element analysis, an approximate formula is derived to estimate the normal traction at the interface and to predict initiation of wrinkle-induced delamination. Next, with a pre-existing delamination crack, the critical strain for the onset of buckling instability is predicted by finite element eigenvalue analysis. For an intermediate delamination size, a mixed buckling mode is predicted with the critical compressive strain lower than previous solutions for both wrinkling and buckle-delamination. Post-buckling analyses show a significant shear-lag effect with an effective load transfer length three orders of magnitude greater the film thickness. Finally, concomitant wrinkling and buckle-delamination is simulated to illustrate the interaction between the two buckling modes, and the results are discussed in view of failure mechanisms and applications in thin film metrology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear analysis of compressed elastic thin films on elastic substrates: From wrinkling to buckle-delamination

Article history: Received 3 December 2013 Received in revised form 8 July 2014 Available online 23 July 2014

متن کامل

Buckling modes of elastic thin films on elastic substrates

Two buckling modes have been observed in thin films: buckle delamination and wrinkling. This letter identifies the conditions for selecting the favored buckling modes for elastic films on elastic substrates. Transition from one buckling mode to another is predicted as the stiffness ratio between the substrate and the film or is predicted for variation of the stiffness ratio between the substrat...

متن کامل

Influence of substrate compliance on buckling delamination of thin films

A thin film subject to in-plane compressive stress is susceptible to buckling-driven delamination. This paper analyzes a straight-sided delamination buckle with a focus on the effects of substrate compliance, following earlier work by B. Cotterell and Z. Chen. The critical buckling condition, the energy release rate and the mode mix of the interface delamination crack are calculated as a functi...

متن کامل

Influence of Interfacial Delamination on Channel Cracking of Brittle Thin Films

Channeling cracks in low-k dielectrics have been observed to be a key reliability issue for advanced interconnects. The constraint effect of surrounding materials including stacked buffer layers has been studied. This paper analyzes the effect of interfacial delamination on the fracture condition of brittle thin films on elastic substrates. It is found that stable delamination along with the gr...

متن کامل

Influence of Interfacial Delamination on Channel Cracking of Elastic Thin Films

Channeling cracks in brittle thin films have been observed to be a key reliability issue for advanced interconnects and other integrated structures. Most theoretical studies to date have assumed no delamination at the interface, while experiments have observed channel cracks both with and without interfacial delamination. This paper analyzes the effect of interfacial delamination on the fractur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011